Characteristics of MuA transposase-catalyzed processing of model transposon end DNA hairpin substrates
نویسندگان
چکیده
Bacteriophage Mu uses non-replicative transposition for integration into the host's chromosome and replicative transposition for phage propagation. Biochemical and structural comparisons together with evolutionary considerations suggest that the Mu transposition machinery might share functional similarities with machineries of the systems that are known to employ a hairpin intermediate during the catalytic steps of transposition. Model transposon end DNA hairpin substrates were used in a minimal-component in vitro system to study their proficiency to promote Mu transpososome assembly and subsequent MuA-catalyzed chemical reactions leading to the strand transfer product. MuA indeed was able to assemble hairpin substrates into a catalytically competent transpososome, open the hairpin ends and accurately join the opened ends to the target DNA. The hairpin opening and transposon end cleavage reactions had identical metal ion preferences, indicating similar conformations within the catalytic center for these reactions. Hairpin length influenced transpososome assembly as well as catalysis: longer loops were more efficient in these respects. In general, MuA's proficiency to utilize different types of hairpin substrates indicates a certain degree of flexibility within the transposition machinery core. Overall, the results suggest that non-replicative and replicative transposition systems may structurally and evolutionarily be more closely linked than anticipated previously.
منابع مشابه
Hairpin formation in Tn5 transposition.
The initial chemical steps in Tn5 transposition result in blunt end cleavage of the transposon from the donor DNA. We demonstrate that this cleavage occurs via a hairpin intermediate. The first step is a 3' hydrolytic nick by transposase. The free 3'OH then attacks the phosphodiester bond on the opposite strand, forming a hairpin at the transposon end. In addition to forming precise hairpins, T...
متن کاملMu Transpositional Recombination: Donor DNA Cleavage and Strand Transfer in trans by the Mu Transposase
Central to the Mu transpositional recombination are the two chemical steps; donor DNA cleavage and strand transfer. These reactions occur within the Mu transpososome that contains two Mu DNA end segments bound to a tetramer of MuA, the transposase. To investigate which MuA monomer catalyzes which chemical reaction, we made transpososomes containing wild-type and active site mutant MuA. By pre-l...
متن کاملBase-flipping dynamics in a DNA hairpin processing reaction
Many enzymes that repair or modify bases in double-stranded DNA gain access to their substrates by base flipping. Although crystal structures provide stunning snap shots, biochemical approaches addressing the dynamics have proven difficult, particularly in complicated multi-step reactions. Here, we use protein-DNA crosslinking and potassium permanganate reactivity to explore the base-flipping s...
متن کاملMicroReview Tn 5 as a model for understanding DNA transposition
Tn 5 is an excellent model system for understanding the molecular basis of DNA-mediated transposition. Mechanistic information has come from genetic and biochemical investigations of the transposase and its interactions with the recognition DNA sequences at the ends of the transposon. More recently, molecular structure analyses of catalytically active transposase; transposon DNA complexes have ...
متن کاملThree-dimensional structure of the Tn5 synaptic complex transposition intermediate.
Genomic evolution has been profoundly influenced by DNA transposition, a process whereby defined DNA segments move freely about the genome. Transposition is mediated by transposases, and similar events are catalyzed by retroviral integrases such as human immunodeficiency virus-1 (HIV-1) integrase. Understanding how these proteins interact with DNA is central to understanding the molecular basis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006